SCIENCE TOOLS: Basic Physics Formulae

Physics & Pre-AP Physics Formula Chart

(Equations surrounded by a box denote they are used by Pre-AP Physics only)

$v_a = \frac{d_t}{\Delta t}$	$a = \frac{V_{f} - V_{o}}{\Delta t}$	w = mg
$\mathbf{v}_{\mathrm{f}} = \mathbf{v}_{\mathrm{o}} + \mathbf{at}$	T = 1/f	J = Ft
$d = v_0 t + \frac{1}{2} a t^2$	f = 1/T	$\Delta mv = Ft$
$t = \sqrt{2d / a}$	$KE = \frac{1}{2}mv^2$	p = mv
$v_{\rm f}^2 = v_0^2 + 2ad$	F = ma	W = Fd
$m_1 v_{1o} + m_2 v_{2o} = m_1 v_{1f} + m_2 v_{2f}$		$F_f = \mu F_n$
$Eff = (W_{out} / W_{in}) \times 100$	$F_d = mg \sin \theta$	$F_n = mg \cos \theta$
PE=mgh	P = W/t	$F_{g} = \frac{Gm_{1}m_{2}}{d^{2}}$
$KE_{o} + PE_{o} = KE_{f} + PE_{f}$		F = kx
$F_c = mv^2 / r$	$a_c = v^2 / r$	$F_c = ma_c$
$v = \frac{2\pi r}{T}$	$\Delta L = L_o \alpha \Delta T$	$\Delta Q = mC_{p}\Delta T$
$\Delta Q = mh_{f}$	$\Delta Q = mh_v$	$T = 2\pi \sqrt{\frac{m}{k}}$

Source: www.docstoc.com